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Non-Gibbsian Limit for Large-Block 
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We generalize a result of Lebowitz and Maes, that projections of massless 
Gaussian measures onto Ising spin configurations are non-Gibbs measures. This 
result provides the first evidence for the existence of singularities in majority- 
spin transformations of critical models. Indeed, under the assumption of the folk 
theorem that an average-block-spin transformation applied to a critical Ising 
model in 5 or more dimensions converges to a Gaussian fixed point, we show 
that the limit of a sequence of majority-spin transformations with increasing 
block size applied to a critical Ising model is a measure that is not of Gibbsian 
type. 

KEY WORDS: Non-Gibbs measure; real-space renormalization. 

1. I N T R O D U C T I O N  

Recently, Lebowitz and Maes, (~) in a study of entropic repulsion of a sur- 
face by a wall, noticed that the projection onto Ising configurations of a 
critical nearest-neighbor Gaussian measure is not a Gibbs measure for any 
reasonable potential. Here we extend this result to include self-similar 
Gaussian models. (2 5) These are fixed points of an average-block-spin trans- 
formation, and they are supposed to describe the fluctuations of block 
spins at the critical point of an Ising model in sufficiently high dimensions 
(d>~ 5). (~9) 

For Ising models, the average-block-spin transformation d c  followed 
by a projection onto Ising configurations is identical to the majority-rule 
transformation ~L introduced by Niemeijer and van Leeuwen. (1~ Now 
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consider applying the average-block-spin transformation, using larger and 
larger blocks (L ~ ~ ) ,  to a critical Ising model in dimension d~> 5. The 
resulting measures are believed to converge to a self-similar Gaussian 
random field. It follows, by a simple continuity argument, that the images 
of the critical Ising model under the majority rule transformation converge 
as L--* oo to the projection onto Ising configurations of the self-similar 
Gaussian random field. But this latter measure is not Gibbsian. Our general- 
ization of the Lebowitz-Maes theorem thus provides the first example of a 
cr i t ica l  model for which a sequence of renormalization transformations has 
a limit in the space of measures on Ising configurations, but not in the 
space of lsing Hamiltonians. 

Let us emphasize that this sequence of transformations is n o t  the same 
as the repeated application of a majority transformation with fixed block 
size. This is a consequence of the fact that the majority transformation is 
nonlinear in the spin variables, so that ~ / ~ L ,  ~ ~L/:. Rather, this sequence 
belongs to the class of "large-cell RG" transformations as described in 
refs. 11-14. But such "large-cell" sequences are clearly part of the "renor- 
realization group enterprise," broadly conceived, even though they do not 
have a semigroup structure. Our example does no t  rule out the possibility 
that the majority-rule RG map is well defined in the neighborhood of the 
critical point, but is does show that this neighborhood must shrink as the 
block size is increased. This casts doubt on the feasibility of a mathematical 
justification of the majority-type renormalization group procedure. 

Doubts about discrete-spin transformations were already expressed 
by Wilson. (15) (Note that the average-block-spin transformation has a 
continuous-spin fixed point which exhibits no peculiarity.) The possible 
occurrence of peculiarities in real-space renormalization transformations 
has been studied extensively by Griffiths and Pearce (16 19) (see also refs. 11 
and 20-22). They found several examples where the transformation appears 
to be ill defined or singular as a mapping of a space of Ising Hamiltonians 
into itself. The precise nature of the peculiarities they found was left open. 
Israel ~2~ considered the decimation transformation and showed that, in the 
low-temperature region, the transformed measure is not Gibbs. Decima- 
tion, however, cannot have a (nontrivial) fixed-point measure, in contrast 
to majority-type transformations. We remark that a measure which is not 
Gibbs can still be an equilibrium state in the sense of the variational prin- 
ciple for some many-spin interaction, but, in contrast to the case of Gibbs 
states, (23) the choice of interaction in this case is highly nonunique. (24-26) 

Burkhardt and van Leeuwen ~27) pointed out that the actual 
singularities had all been found at some distance from the critical point and 
that "no compelling evidence for singularities in the critical region.., has 
yet been found" (ref. 27, p. 17). Our observation shows, however, that the 



Non-Gibbs Measure 173 

region of peculiarities might extend to the critical point in the limit of 
larger and larger blocks. This supports a conjecture made by Israel. Iz~ 
Recently additional evidence for peculiarities in the whole coexistence 
region was found by Hasenfrantz eta/ .  (28'29) Their results include the case 
of linear transformations, but are complementary to ours in the sense that 
they do not treat critical models. 

2. RESULTS AND PROOFS 

The model we consider is a Gaussian self-similar random field on 7/d 
which has a covariance given by (2 5) 

1 f[ ( ( p ) e  ip~x Y) dp (1) #c(  S~Sy) = Cxy - (2rc)d . . . .  ]d 

with 

O(p)= ~ Ip+2rtkl 2+, l~i 
4 sin2(pi/2) 

~ z d  i= ~ (p i+  2nki) 2 (2) 

and 0 ~< q < 1. The Gaussian measure/~c with covariance C and mean zero 
is well defined as a Radon measure on /2= Nzd (with the topology of 
pointwise convergence) if d~> 3, and the following result is well known. (5) 

Propos i t ion  1. #c is a Gibbs measure for the Gaussian interaction 
~ =  { ~ x [ X c Z  d finite} given by 

B~ Sx , ~ i x } ( S x )  ~- 1 2 

~ { x , y } ( S x ,  S y )  = B x y S x S y  

~x=O if IXI >2  

where 

is the inverse of the covariance matrix C, and d~> 3. 

Formally, we can write the Hamiltonian for the Gaussian model as 

14= k Z SxS, (3) 
x, yE 2 vd 

From Eq. (2) it follows that 0 (p ) - l eSe~( [ - r c ,  =]u); ( ( _ p ) = g ( p )  and 
O(p) ) 0. Furthermore, 

Bxy ~ Ix--  y] a-2+.  (4) 
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so that 

~', IBxyl < o0 (5) 
Y 

For further details see refs. 2-4. Essential for the Lebowitz-Maes theorem 
is that H is a critical (massless) Hamiltonian, i.e., 

Z Bxy=O (6) 
y ~ TZd 

Hence there is a noncompact symmetry in the model, namely shifting the 
spins by a unform constant: 

P r o p o s i t i o n  2. For a~  ~, let / ~  be the Gaussian measure with 
mean a and covariance C defined by (1), i.e., # ~ =  r , # c ,  where Za shifts all 
spins by the constant a. Formally, Za is defined by 

f F({S~}) (~a]A)(dS) = f F({Sx + a}) #(dS) 

for any integrable function F of the spins {Sx}. Then, for each a ~ ~ , / ~  is 
a Gibbs measure for the Hamiltonian (3). 

Proof. Let #"c(dSal~;A,) denote the conditional distribution of the 
spins SA is a finite subset A c Y ,  given a configuration of spins SA~ on the 
complement. The conditional distributions of #~ are related to those of Pc 
by 

#"c(dSA I SAc) = ro#c(dSa Sac- a) 

for all finite A c 2U. Consequently, 

f F(SA) #~c(dSA I~ac)= ~ F(SA + a) exp[ --H(Sa I SAc- a)] dSa 
I e x p [ - H ( S A  I SA,-- a ) ]  dSa 

where 

H(S~ ISle) = Y~ %(Sx)  
X c ~ A # f 2 ~  

If follows that 

H(SAISAc--a)=H(SAISAc)--a ~ ~ BxySx 
x E A  y E A  c 

=H(SAISAc)+a ~ BxySx 
X, y E A  

=H(SA+aISAc)--a Z Z BxySy--�89 a2 
x ~ A  y ~ A  e 

Bxy (7) 
x , y ~ A  
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so that 

f F(SA) p~(dSA I SAc) = j" F(SA) exp[ -H(SA I SAC)] dSA 
J 

exp[- -H(SA I Sm)] dSA 

i.e., #~ is also a Gibbs state. | 

For each integer L/> 2, consider the block-spin transformation 

S'x= F, (8) 
y ~ BL(X) 

where the blocks BL(x) are hypercubes about Lx with sides of length L. 
This transformation on ~za induces a transformation ~r on the space 
Jgl(~ ~a) of translation-invariant probability measures on ~ a .  In particular, 
the measure Pc is invariant under ~r for all L (that is why it is called "self- 
similar"). Moreover, in the case r/= 0, #c  is believed to be an attractive 
fixed point for the critical Ising model in dimension d~> 5 ("non-central 
limit theorem"), (6 9~ in the sense that 

lim ~L#cri t ical  Ising = P C  (9) 
L ~ c o  

in the topology of weak convergence of measures. In other words, the 
distribution of properly rescaled block spins should approach the Gaussian 
fixed point Pc as the block size L tends to infinity. 

Now consider the projection map r Jg1(~ ~)  ~ ~'t( { - 1 ,  1 } ~a) induced 
by the transformation 

ax = sgn Sx (10) 

from continuous spins to discrete Ising spins. [The ambiguity of (10) at 
Sx = 0 is resolved by an arbitrary prescription; the simplest is to define ax 
to be +1 with probability 1/2 and to be - 1  with probability 1/2.] 
Finally, let J : d / / l ( { - 1 ,  1}z~)~J / / l (~  Z~) be the trivial injection (every 
probability measure on { - 1 ,  1} ~ is also a probability measure on [Rz~). 
Then the Niemeijer-van Leeuwen (m) majority-rule transformation ~L: 
~ '~ ({-1 ,  t} ~)  ~ J/g~({-1, 1} zd) is precisely 

~ L = # ~ 1 7 6  (11) 

In other words, we have the following diagram: 

l 
:g,({-1, :<({-1, l} 

822/55/1-2-12 
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Now consider applying the Niemeijer-van Leeuwen majority-rule transfor- 
mation NL, on larger and larger blocks, to a critical Ising measure. We get 

lim NL ]2criticalIsing = lim ~ O ~ L # c r i t i c a l i s i n g  
Z ~ o o  Z ~ a o  

= ~ (  lim J~CL #critical ising ) 
L ~ o o  

= ~ # c  

where we have used (9) together with the continuity of ~ at #c. [-Note that 
is not a continuous map from Jdt(R Za) to ~ ' ( { - 1 ,  1 }za), because of the 

discontinuity of the sgn function at 0. But N is continuous at all measures 
/~ e J/,/~(N ~)  that give zero probability to the set {SI Sx = 0 for some x}. In 
particular, ~ is continuous at Pc . ]  Proposition 4 below then implies that 
the limiting measure N # c  cannot be a Gibbs measure. This result follows 
from a generalization of the Lebowitz-Maes theorem: 

P r o p o s i t i o n  3. Let ( . ) a  denote the expectation with respect to the 
measure #~ and put ax = sgn S~. Then 

, +xp( x  l~m ~A-~ In ~ ~rx)> = Ih[ 

Proof. We proceed as in ref. 1, Lemma 1. Thus we have, for h > 0, 

exp(hlA])>~(exph ~ ax) 
x ~ A  0 

>~exp(hlA[,(xnAZ(S~>~O)) ~ (12, 

and 

(13) 

In the following we write zk(SA) for I~x~Az(ISxl<~k). We estimate 
In[ (z~(SA)) -k/(zk(SA))O] as follows: Writing #~(dSAc) for the marginal 
distribution of the spins SAc, we have 

j (F(SA) #~(dS) = j [ #~ ~ F(SA) exp[ -H(SA - a I SAc)] dSA 
exp[ - H ( S A  I SAc)] dSA 

= (F(SA) expl- - Ha(S)]  )o (14) 
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with 

/~ra(S)=-a  Z BxySx+�89 a2 E Bxy-a E Z BxySy (15) 
x,  y c A  x , y ~ A  x ~ A  y E A  r 

In particular, ()~k(SA)) k = (zk(SA) exp[--/4_k(S)] )o. 
Using the Cauchy-Schwarz inequality, we find 

x t/2 (zk(SA))o<~ ()~k(SA)exp[--/4 k(S)]~o (exp[ /4- -k(S) ] )o  t/2 (16) 

and it follows that 

ln()~k(SA))-k>>-21n(zk(SA))o--ln(exp[ FI k(S)])o (17) 

But 

ln(exp[/4-k(S)-])o= -k2 ~ ~ Bxy 
x ~ A  y ~ A  c 

(18) 

is of order o(]AI) by (4). To bound the first term we use the Brascamp- 
Lieb inequalities as in ref. 1, Eq. (6). For the convenience of the reader we 
repeat this argument here. Define the expectation (-)(kA) by 

(F (S )  ) (k~)  = 
(F (S )  z~(sA) >o 

(zk(SA))0 

Then, if yeA and A'=A\{y}, 

(zk(SA))0 = [1 -- (z(Iayl >k))(kA,)]()~k(Sa,))o 

~> [1 - k  -2 2 (s~)(k~,) ] (zk(S~,))o 

by Chebyshev's inequality. Now, by the Brascamp-Lieb inequalities, (3~ 

( S ~ ) ( k A , )  <~ ( S ~ ) o  = Cyy =- c 

Thus we find that 

(zk(SA))O ~> (1 -- ~ )  (zk(SA'))O 

Iterating this inequality, we obtain 

ln(z~(SA))o~> IAI In 1 --~5 (19) 
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(Note that we apply the BL inequalities to the marginal distribution of SA, 
which is strictly positive.) We conclude that 

�9 1 
sup h rn ~-~ in 

This proves the proposition. | 

(20) 

We now use the following result. 

I .emma. The following relation holds: 

lim _~1 

P(~//+h)=Ahfnzd]-~ln~exp - ~U(X)ax-h E ax 
aA A x ~ A  

j i m  [A~ln ( e x p ( - h  ~ a x ) )  = p(~g') + 
x E  A A,~/ -  

In (exp ( - h \  \ x~a ~ a~))a, ,~ = A--zalim --~-1 In (exp ( , A ,  - h  xea aX))o 

have by definition 

P(~//')= lim ~ 1  l n ~ e x p [  ~A ~e~(X)axl 

and 

(21) 

(22) 

Remark. In fact our proof only used that (a) there is a broken, non- 
compact symmetry for the Gibbs state, (b) the Brascamp-Lieb inequalities 
hold, and (c) the decay of the interaction satisfies condition (5)�9 

Hence, our results extend to all models satisfying these conditions. 
In particular, they extend to all Gauss measures satisfying (5) and (6), 
e.g., with higher dimensional spins. It also holds in case the measure 
is not translationally invariant if we replace condition (5) by 
SUpxegaZy~Zd IBxyl < oo. 

From Proposition 3 and a result of Griffiths and Ruelle's (23) we may 
conclude that the induced measure /7 on { -  1, 1 }zd cannot be a Gibbs 
measure: 

Propos i t ion  4. Define j" F(a) [t(da) = ~ F(sgn S) #c(dS). Then there 
exists no Ising potential ~ such that Y.x~ o I~(X)l < ~ for which/~ is a 
Gibbs measure. 

ProoL We shall prove that, if fi were a Gibbs measure with respect 
to ~ ,  then the pressure P ( ~  + h) would be piecewise linear in the external 
field h. This contradicts the result of ref. 23 that P is strictly convex. We 
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It then follows from Proposition 3 that P(~U + h ) =  P(~U)-[hi  (which is 
piecewise linear in h). 

Proof of the Lemma. We have 

1 <exp(h ~_~xcA O'x) >0 
- -  I n  

IAI (exp(h Y~x~Aa~))A,~ 

1 (, 
In J ~(d,r~c) IAI 

Z ~  exp[--  He-(a A) + h Z ~  A ax + W r  A law,)] 

Y~oa exp[ -- H.r(a~) + W.-(aA I~J]  
Z.a  e x p [ -  H.- (aa)  ] 

Z .a  exp[ - H~-(aA) + h Zx~a ax] 

As 

XnA~;;O 
X n A C ~  

a standard argument as in ref. 24 or ref. 25 proves the lemma. 4 

3. C O N C L U S I O N S  

The fact that Ising-to-Ising transformations, being nonlinear in the 
spin variables, may have problems of their own was already mentioned by 
Wilson. (15/ The work of Griffiths and Pearce ~ 19) has shown that these 
problems might in fact be serious because these renormalization transfor- 
mations need not exist as maps of a reasonable space of Hamiltonians into 
itself. However, the singularities observed by these authors and 
others (11'2~ were all situated in a region bounded away from the 
critical point. In fact, it was conjectured by Israel (2~ that this singular 
region should close in on the critical point as the transformation is 
repeated. The example we have presented here supports this conjecture. We 
must stress that the majority transformation applied directly to a large 
block is not the same as a repeated transformation with a fixed block size. 
However, the former has also been used for investigating critical behavior. 
In view of the results of refs. 6-9 the block spin should have a Gaussian 
critical behavior in d~> 5 dimensions. It is the projection of Gaussian 
models on Ising spins which causes the problems. In three dimensions the 

4 A different proof of Proposition 4 was kindly explained to us by Dr. C. Maes. 
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Gaussian self-similar process is not stable, and we do not know the stable 
fixed point for the transformation (8a). However, the Lebowitz-Maes 
theorem also applies to certain massless ~b4-models. ~1) We therefore expect 
the same problems to arise for lower dimensional models. 

It has been shown that real-space renormalization is mathematically 
well defined at very high temperatures or low dens i t i es .  (11'16-21'31 33) 

Although our example does not rule out the possibility that it is also well 
defined in the neighborhood of the critical point, it does show that this 
neighborhood must shrink as the block size is increased. This casts doubt 
on the feasibility of a mathematical justification of the majority-type renor- 
malization group procedure. 
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